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1 Introduction

In this talk, we construct certain combinatorial bases of the endomorphism algebra of a tilting
object in a standard category over a field. The talk closely follows [BT22) Section 3]. Conse-
quently, for the most part we employ the notational conventions of [BT22]. The quoted article
[BT22] generalises the construction of [AST1§| from the context of quantum enveloping algebras
to a broader categorical framework. More precisely, the category of modules over a quantum
enveloping algebra is replaced by an arbitrary so-called standard category over a field.

For completeness, we recall the definition of a standard category over a field.

Definition 1.1
Let K be a field. Let A be a partially ordered set. A category € is called a standard category
over K with respect to A if it satisfies the following four assumptions:

1. (Basic properties) The category € is an essentially small, locally finite, K-linear, abelian
category. By locally finite we mean on the one hand that all objects in ¢ have finite length.
On the other hand, the hom-space Homg (X ,Y") is required to be a finite-dimensional K -
vector space for all objects X,Y € €.

2. (Simple objects) There exists a set { L(\)} ea of simple objects in € such that the function
A — {isomorphism classes of simple objects in €'}
A — isomorphism class of L(\)
is a bijection.

3. (Ext-vanishing condition) Each L(\) has a costandard object V() and a standard object
A(X) such that the following Ext-vanishing condition holds for every i € {0, 1,2} and all
A€ A:

Exti, (AQ\), V(1) =

0 else

{K ifi=0and \=p

4. (Indecomposable tilting objects)

(a) For any A € A, there is an indecomposable tilting object T (\) such that:
i. T()) is of highest weight \,
ii. There is a monomorphism A(\) < T(\),
iii. There is an epimorphism T'(\) — V().
(b) The function

A — {isomorphism classes of indecomposable tilting objects in €}
A — isomorphism class of T'(\)
is a bijection.

Remark 1.2. (Terminology)
We will mostly call a ‘standard category over K with respect to A’ simply a ‘standard category
over K.



Recall Proposition 3.2.5 from the previous talk by Kian.

Proposition 1.3. (Donkin’s Ext-criteria)
Let & be a standard category over K. Then the following two equivalences hold:

(i) M e €2 if and only if Ext (M, V()\) = 0 for all A € A.
(ii) N e €V if and only if Ext,(A(N), N) = 0 for all A e A.
Corollary 1.4.

Let € be a standard category over K. Let M € € and N € €V. Then Ext..(M,N) = 0.

Proof.
We proceed by induction on the length of a costandard filtration of N. The base case follows
immediately from Proposition For the induction step, let

OZNO;"’;Nn—lg—Nn:N (1)

be a costandard filtration of N € €. Let A € A such that N,/N,_; = V(X). Applying the
functor Homg (M, —) to the short exact sequence

0—>N,.1—>N->V(A)—-0 (2)
yields an exact sequence
0— - — Exti,(M,N,_1) — Exty,(M, N) — Exty,(M,V()\)) — - . (3)

By the induction hypothesis we know that Ext%(M , N,,—1) = 0 holds. Moreover, by Proposition
we have Ext, (M, V()\)) = 0. Since the sequence [3|is exact, it follows that Exti. (M, N) = 0.
By induction the claim follows. O

2 Tools: Lifts and extensions

For the remainder of this talk, we fix a field K and a standard category ¢ over K. Additionally,
we fix objects M € €* and N € €V.
For every A € A, we choose an epimorphism 7*: T(\) — V(\) and a monomorphism
o A(X) = T(X). These exist by Definition [I.1}4. For every A € A, define ¢* := 7t o /A,
Informally, we will construct bases of Home (M, N) by ‘factorizing through the indecompos-
able tilting objects {T'(A)}ea of €." Each factoring morphism will be realized either as a lift
along 7 or as an extension along ¢*.

The following lemma will be the main tool in the subsequent construction of bases of Homg (M, N).

Lemma 2.1. (Lifting lemma)
Let A e A. N
(i) Any morphism f: M — V() lifts to a morphism f: M — T()\) along 7*: T(\) — V().
As a commutative diagram:

M -’ A > T(N)
f ﬂ.A
V(A



(ii) Dually, any morphism g: A(A) — N extends to a morphism g: T'(\) — N along
*: A(X) = T(N). As a commutative diagram:

Proof.
We only prove the first part of the lemma; the second one is shown dually.
Consider the short exact sequence

0 = ker(m) — T(\) => V(X) — 0. (4)

We claim that the object ker(7) € € admits a costandard filtration. By Donkin’s Ext-criteria
this amounts to proving that Exti (A(u), ker(7})) = 0 for all u € A. The subsequent proof
of this claim was suggested by Paul Wedrich. Let u € A. Applying the functor Homg (A (i), —)
to the short exact sequence {4 yields an exact sequence

A

Homi (A(u), T(N)) = Homg (A (p), V(X)) — Exti(A(u), ker(m)) — Exti(A(n), T(A)). (5)

Note that by Donkin’s Ext-criteria we have Exty (A(u), T(\)) = 0. We make a case dis-
tinction. If g # A, then by Definition [L.1]3, we have Homg (A (), V(X)) = 0. Since sequence
is exact, we conclude ExtL (A (), ker(7*)) = 0. If on the other hand z = A, then by Proposition
3.2.7.3 from Kian’s talk, the morphism

72 Homg(A(N), (X)) — Home (AN, V(X)) (6)

is surjective. By the exactness of sequence [5|and since Exti (A(X), T()\)) = 0 holds, this implies
Exti (A()), ker(7)) = 0. Thus, the object ker(7*) € ¥ admits a costandard filtration.

Since by assumption, M € ¥ admits a standard filtration, it follows from Corollary
that Extg (M, ker(7*)) = 0. Consequently, by applying the left exact functor Home (M, —) to
sequence [ we obtain the exact sequence

0 — Homgy (M, ker(m)) — Homg (M, (X)) =5 Homey (M, V(X)) — Exth (M, ker(x)) = 0.

Thus, the map
7 Homg (A(M, T(N) — Homey (M, V(N))

is surjective. ]

Remark 2.2.

In general, the lifts and extensions of the lifting lemma [2.1| are not unique. In other words,
post-composition with 7 (pre-composition with +*) is not injective in general. Moreover, the
proof of the lifting lemma gives a criterion for the injectivity of the map 7. Namely, the
map 7 is injective if and only if Home (M, ker(7)) = 0.



3 Basic construction

By employing the lifting lemma [2.1] we will now construct bases of the finite-dimensional
K-vector space Homy (M, N).

Construction 3.1.
The construction consists of six steps.

(1) For every A € A, choose a basis F3; of the finite-dimensional K-vector space Home (M, V(\)).

(2) Next, for every A € A and every basis element f € F choose a lift f € Homg (M, T()\))
along 7. Such a lift exists by the lifting lemma . Denote the set of lifts by

Yy ={]| feFy}.

(3) Dually, for every A € A, choose a basis G}, of the finite-dimensional K-vector space
Homg (A(N), N).

(4) For every A € A and every basis element g € G pick an extension § € Homg (T'()), N)
along ¢*. Denote the set of extensions by

Gy i=1{71geGrt
(5) Next, for every A € A, define the subset
GhEy = {50 fl§eGyand fe Fyy} < Homg (M, N).

Here, we employ the following convention: If one of the sets CNJJAV or I 1 is empty, then we
let the set G\ Fyy be empty.

One may illustrate the set G F? by the subsequent commutative diagram:

(6) Finally, define the following set

éNﬁM = U é?\]ﬁ‘]{} - HOHI(g(M, N)
AeA



4 Basis theorem(s)

The next theorem is the main result of this section.

Theorem 4.1. (Basis theorem)
The set GnF)y is a basis of the K-vector space Home (M, N).

Before we prove the basis theorem, we first show a weaker version. To be able to formulate
and prove the weaker version we need a few additional definitions and results.

Definition 4.2
Let ¢ € Homy(M,N) be a morphism. Let n € A. We call ¢, == [im(¢): L(n)] € N the
p-multiplicity of ¢.

Lemma 4.3. (Subadditivity of the u-multiplicity)
Let ¢, € Homg (M, N) and € A. Then we have (¢ + ¢), < ¢, + ¢,

The proof of Lemma [4.3| employs a corollary of the following proposition.

Proposition 4.4.
Let A e A. Let
0-X—->27Z-Y -0

be a short exact sequence in €. Then the following equality holds
[Z: L(\)] =[X: LIV)]+[Y: LN

Proof.
The proposition immediately follows from the proof of [P70, Corollary 4.5.2].

More specifically, let
O=4yG - SZi=Xc - CZ, =2

be a composition series of Z through X. Such as composition series exists by [P70, Proposition
4.5.1]. Note that for all k€ {i,...,n — 1} we have

(Zk41/ X)) (2 X) = Zii1/ 2k (7)

by one of the isomorphism theorems. In particular, the object (Zy41/X)/(Z;/X) is simple for
all ke {i,...,n—1}. Thus, 0= Z;/X < --- < Z,/X =Y is a composition series of Y. Now,
equation (7| immediately yields [Z: L(A)] = [X: L(\)] + [Y: L(A)].

O

Corollary 4.5.
Let Ae A. Let X,Y € € be objects. Then the following hold:

(1) If there exists a monomorphism X < Y, then we have [Y: L(\)] = [X: L(N)].
(i) If there exists an epimorphism Y — X, then we have [Y': L(\)] = [X: L(\)].
(i) We have [X®Y: L(\)] = [X: L\)] +[Y: L(V)].



Proof of Lemma [4.3]

Let ¢,9 € Homg (M, N) and p € A. Firstly, note that im(¢ + ¢) < im(¢) U im(¢0) by [P70}
Lemma 4.3.6.]. Here, im(¢) U im(1)) denotes the join in the preorder of subobjects of N. The
join exists in any abelian category. Additionally, the two canonical morphisms

im(¢) — im(¢) U im(y))
im(y) — im(¢) v im(y)

induce an epimorphism
m(¢) @ im(y) — im(¢) v im(y).
Thus, by Corollary [4.5] we have for all u € A:

(6 + ), ©im(6 + v): L] < [im(6) L im(®): Lw)] < [im(6) @ m(v): L(w)]
= [im(¢): L(p)] + [im()): L(p)]
dﬁfﬁbu +
Next, given A € A, define two sets o

Homy (M, N)<* := {¢ € Homy (M, N) | ¢, # 0 implies p < A},
Homg (M, N)=* := {¢ € Homy (M, N) | ¢, # 0 implies p < A}.

Remark 4.6. (A filtration-like structure)
Let p, A € A. If ;1 < X holds, then we have the subsequent inclusions:

Homey (M, N)S* < Homy (M, N)S*,
Homy (M, N)=* < Homy (M, N)=.
Proposition 4.7.
Let A e A.
(i) The set Home (M, N)S* is a K-vector subspace of Home (M, N).

(i) Similarly, the set Homg (M, N)=* is a K-vector subspace of Homg (M, N).
Proof.
We only show statement (i). Statement (ii) is proved analogously.

Clearly, we have 0j;y € Home (M, N)S*. Next, we convince ourselves that the set Homg (M, N )<
is closed under scalar multiplication. To do so, let k € K and Homy (M, N)S*. Since the cate-
gory € is K-linear, we have

im(¢) ifk+#0
0 else

im(k - ¢) = { )
Hence, k - ¢ € Homg (M, N)=*.

Next, we argue that Home (M, N)S* is closed under addition. Let ¢, € Home (M, N)SA,
Let € A such that 4 € A. By the subadditivity of the y-multiplicity (i.e. Lemma [4.3)), we
then have:

0<(@+¥) <P+ =0+0=0. (9)
0



Lemma 4.8.
Let A€ A. If ¢, € Homg (M, N) and ¢y = 0, then (¢ + 1), = .

Proof.

Consider the map ¢ := coker(¢): N — N/im(¢). Set ¢ = qo ¢ and ¢ + ¢ = qgo (¢ + ¢). Since
in an abelian category composition is bilinear, we have ¢ + ¢ = 1. Moreover, we claim that
(¢ + )y = (¢ + )\ and ¥y = ¢¥,. We only show ¥y = 1,. The other equality is proven
analogously. By Corollary we know that

d:ef

0 < [im(t) nim(9): L] < [im(): L) L'g, = 0. (10)

Consider the following short exact sequence
. . inc . q}im . .
0 — im(¢) N im(y)) — im(e)) Anm@), M (qpim(y)) = im(q o) — 0.

Here, the morphism ¢jimy): im(y)) — N/im(¢) is defined as the composition of morphisms
Qtim(y) ‘= qom, where m: im(v)) < N denotes the canonical monomorphism. With Proposition
and equation |10/ we conclude vy = .

In total, we find

(@+U)x = (0 +U)r =1y, =y

We are now finally able to prove the weaker version of the basis theorem [4.1

Proposition 4.9. (Dependent basis theorem)
For every u € A, choose a basis F}; and a corresponding set of lifts F};,. Then for all u € A,
there exists a basis G, and a set of extensions G, satisfying the following properties:

(i) The set Gy F)y is a basis of the K-vector space Homg (M, N).
(ii) Eet e A. If ¢ is a non-zero morphism in the K-span span (@’f\,]}]’(/[) < Homy (M, N) of
G\ Fhy, then ¢, # 0.

Additionally, any choice of G% and G that satisfies properties (i) and (ii) also satisfies the
following two properties:
(ili) For all A € A, the set |, G" F' is a K-vector space basis of Home (M, N)<.
Similarly, for all A € A, the set Uu</\ é’](,ﬁﬂ’} is a K-vector space basis of Homg (M, N)=.

(iv) The sets G% F¥, are pairwise disjoint for the various p € A.

Proof.
Regarding (i) and (i1): We will show statements (i) and (ii) simultaneously by induction on the
length [ of a costandard filtration of N.

Base case: 1If [ = 1 holds, then there exists an element A € A such that N =~ V().

We set
AV AN =
G {c*} 1
(%) else



Here, the morphism ¢* is defined as in Section . If 4 = X holds, then Gy, = {c*} is a
basis of Homg (A(u), V(\)) = K since ¢* is non-zero. If on the other hand p # A holds,
then Homy (A (1), V(A)) = Exty(A(u), V(X)) = 0 by Definition .3. Thus, G' is a basis of
Homg (A(p), N) for all p e A. Next, define

~ ™ if A=
o - {{ ) 1
%) else

By definition of ¢* (c.f. Section , the morphism 7 extends ¢* along .
Now, observe that the following chain of equalities holds

GnEy = GNEY, = FR,. (11)

Thus, the set Gy Fyy = F2 defines a basis of the K-vector space Homg (M, N) = Homg (M, V(\)).
To show statement (ii) in the case I = 1, pick u € A and let ¢ € span (CNJ’](,}?’A’}) be a non-zero

morphism. Since spany (CNJ‘]Q}NW 1) = 0 for p # X by definition of G" and by the convention
mentioned in step (5) of Construction , we conclude p = A. Thus, we have with equation

¢ € spany (Fy;) = Home (M, V(X))

In particular, the image im(¢) is a non-zero subobject of V(). Hence, the socle L(\) =
Soc V() is a subobject of im(¢). Thus, by [P70, Proposition 4.5.1] there exists a composition
series

0=Ac A< <A, =1im(¢)

in which L(\) appears as an element. Since L(A) is simple, we know A; = L(\) and thus

0 # [im(9): L(/\)]d:ef%' This shows statement (ii) in the case that [ = 1.

Induction step: For the induction step let [ € N\{1}. Let N € € be an object with costandard
filtration

0=No<---Ni_1< N, =N. (12)
By the induction hypothesis, there exists a basis Gy, , of Homg(A(X), Nj—;) and a set of

extensions CENH such that the set C?’NH]}M is a basis of Homg (M, N,_;) satisfying (ii). From
said data we now construct a basis of Homg (M, N).

To do so, find A € A with N;/N;_; = V(A). Consider the short exact sequence
0— Ny 2% N 29 g()) — 0. (13)

Let p e A. Applying the left exact functor Homy (A(r), —) to sequence (13| and using Corollary
1.4] yields the following short exact sequence in the category of finite-dimensional K-vector
spaces:

0 — Homg (A1), Ni_1) 2% Homg (A(g), N) 2% Home (A(n), V(A) — 0. (14)

Analogously, by applying the left exact functor Home (M, —) to sequence (13| we obtain the
following short exact sequence in the category of finite-dimensional K-vector spaces:

0 — Homg (M, Ni_y) 2% Homg (M, N) 2% Homg (M, V(X)) — 0. (15)

9



Next, we define the set G, depending on u € A.
In the case that pu # A, set
Gl = inc, (Gly,_ ) (16)

GY = inc, ((:"J(,lfl). (17)

Since by Definition [I.1]3 we have Homg (A(p), V(X)) = 0 if ¢ # A, the morphism inc, in se-

quence [14]is a K-linear isomorphism. Thus, the set G'y is a basis of Homg (A(p), N). Moreover,
by construction the set (N}”]ﬁ, is a set of extensions of G’ along (/.

In the case that p = ), choose a morphism g*: A(\) — N such that projo g* = ¢*. Here, the

morphism ¢* is defined as in Section . Such a ¢ exists, since the sequence [14is exact. Then
the set

GIJLV = inC*( Ni— 1) {g }

defines a basis of Homg (A (M), N), since {¢*} is a basis of Homg(A(N), V()\)) = K and any
short exact sequence of vector spaces (in particular sequence [14)) splits. Next, choose by the
lifting lemma any extension §*: T'(\) — N of g* along (* and set

Gy = 1nc*( Ny ) v (18)

By construction the set () is a set of extensions of G along *. We omit the proof that with
definitions |17/ and (18| the set Gy Fy = | Jyop GNFay 1s a basis of Homy (M, N). A proof is given
in [ASTIS8, Proposition 3.3.4]. That this basis satisfies (ii) is shown in detail in [BT22, p. 18].

To prove statements (iii) and (iv) choose a basis Gy and a set of extensions Gy satisfying (i)
and (ii).

Regarding (iii): Let A € A. By assumption (ii), it suffices to prove that J,., Gy Fj spans
Homy (M, N)S*. We first convince ourselves that if ;1 < A holds, then we have the inclusion

G" F! < Homy (M, N)=. (19)

2] def[ (Cu> L( )] #OfOI‘I/EA
then [im(g;'): L( )] # 0. This follows from Corollary since by [P70 Lemma 4.3.6 a)] w

have im(g! o f“) < im(g'). Thus, again by Corollary

[T(p): Lw)] = [T(w)/ ker(g): L(v)] = [im(g7): L(v)] > 0. (20)

Since T'(1) is of highest weight u by Definition .4, we conclude p > v. With the transitivity
of the partial order, we hence have A > v. This shows inclusion [19. From inclusion we
conclude

To see this, let g of;‘ e GH F . Set =gy of;‘. If ( )

span ( U G %) < Homeg (M, N)=N, (21)

HEA

Now, to show that the two sets appearing in [21| are actually equal, pick a non-zero morphism
¢ € Homg (M, N)S*. By assumption (i), we can write

6= alid,

neA

10



with a;; € K and ¢} € G" F" for yi e A. Pick a maximal (not necessarily unique) € A such
that aj; # 0 for some i and j. Define

O = Zafjcfj and ¢7* = Z ag;cij-
& v
irj
Since the set of ¢j;’s is K-linearly independent, we know that ¢ € span (CNJ‘]‘V]; ]’\‘4) is non-zero.
With (ii) we conclude that the g-multiplicity (¢*),, is non-zero. By the maximality of ; we have
(¢7#),. = 0. Now, Lemma [4.§] yields the chain of equalities ¢, = (¢ + ¢**), = (¢"), # 0. By
definition of Homy (M, N)S*, we conclude p < A. Since this inequality holds for any maximal

i, this implies ¢ € span (ng/\ C?ﬁ,ﬁ’ﬂ‘ﬁ[)

Regarding (iv): Let ¢ € GNFY n G4 FY,. By definition of a basis we have ¢ # 0. With prop-
erty (ii) we conclude ¢, # 0. Additionally, by property (iii) we know that ¢ € Homg (M, N ).
Thus, p© < A. By exchanging 1 and A one shows A < p. With the antisymmetry of a partial
order, we conclude A = p.

O

Remark 4.10.
One may exchange the roles of Fj; and Gy in the basis theorem 1.9

With Lemma 3.2.4. from Kian’s talk, we obtain the following result.

Corollary 4.11. (Counting dimension via multiplicities in (co)standard filtrations)
We have
dimy (Homy (M, N)) = Y (M: V(X)) - (N: A(N)).
AeA

The dependent basis theorem now allows us to prove the original basis theorem by a change-
of-basis argument.

Proof of Theorem [4.1].
A detailed proof is given in [BT22 Proof of Theorem 3.2.]. The proof amounts to showing that
a certain linear transformation is an isomorphism. ]

The proof of the basis theorem yields the subsequent proposition.

Proposition 4.12. o
Any choice for Fyy, Gy, Fiy, G in Construction satisfies property (ii) of the dependent
basis theorem [£4.91

Proposition together with the dependent basis theorem [£.9] implies the following result.

Corollary 4.13. L
Any choice for F}y, Gy, Fiy, G in Construction satisfies properties (iii) and (iv) of the
dependent basis theorem

11



5 Combinatorial bases

We fix a tilting object T' € €. The basis theorem immediately gives us a way to construct
bases of the endomorphism algebra Endg (T") of T. In this section, we equip these bases with
extra (combinatorial) structure.

5.1 Standard bases

It turns out that the bases of the endomorphism algebra Endy(7') constructed in the basis
theorem already come with a canonical combinatorial structure, making them so-called
standard bases.

Definition 5.1 (Du-Rui)
Let E be a finite-dimensional K-algebra. A standard basis of E consists of:

(i) A K-basis B of E,
(ii) A poset A and a function f: B — A. We write B* := f=()\),
(iii) For any X\ € A, indexing sets I* and J* such that:

(a) We can write B* = {¢}; | i e I" and j € J*},

(b) For any ¢ € E and any c e B*, we have:

¢l = Z ra(¢,i)cp; mod E=2, (22)
kel>

cg\j = Z rl)‘(j, ¢)cg\l mod E<*, (23)
leJ>

where 1, (¢,1), (4, ¢) € K are independent of j and i, respectively.

Here, we let E<* := spang(|J,., B*) € E.

Theorem 5.2.
Any K-basis GrFr of Endg(T) arising from Construction carries a canonical structure of
a standard basis.

Proof.
Firstly, note that by Corollary the set B is fibered over the poset A, i.e.

Grbr = [GLEY. (24)
AeA
For any A € A, we can thus set o
= Gy Fp. (25)
Secondly, for any A € A, define
={neN|n<(T: AN)} (26)
={neN|n<(T: V(N)}. (27)

12



By Lemma 3.2.4. from Kian’s talk, we can index

Gy ={3|iel) (28)
By ={f|je . (29)

We can thus write N
B = {3} o f} | il and j e J'}. (30)

Next, we prove equation Let ¢ € Endg(T). Choose G} o f]f\ e GMF). Set oy =0po f;\.
Since G2 is a basis of Hom(A (), T'), we find (¢, 7) € K such that

pog) =Y (@ i)gr. (31)
kel
Since for each k € I* the morphism g extends g3 along (*, equation |31| yields
bog ot =Y (@)@ oY), (32)
kel>

Since composition in an abelian category is bilinear, this amounts to

(0o = X, (e, D)) o = 0. (33)

kelr

Note that Homg (T (M), T) = Homg (T (M), T)S*. The inclusion 2 is clear. For the other inclu-
sion, let ¢: T'(A\) — T with v, # 0. Then

[T(N): L(p)] = [TV, ker(w): L(u)] = [im(¥): L(w)] > 0.

Since by assumption T'(\) is of highest weight A\, we conclude p < A. The inclusion < follows.

In particular, we see that ¢ = ¢ o 3> — >, 2 (¢,9)7p € Homy(T(N), T)S*. We even know
that ¢ € Homg(T(X\), T)<*. To see this, note that by the universal property of the kernel and
by [33| there exists a monomorphism A(\) < ker(A). Thus, by Corollary we have

[ler(): L(N)] = [A(N): LOV]. (34)

Since both T'(A) and A(\) are of highest weight A, we conclude with one of the isomorphism
theorems:

0=[T): L] = [AN): LN] = [T(A): L] = [ker(y): L(A)]

[T(N)/ ker () : L(N)]
[im(4)): L(A)].

Next, note that im(¢) o f:A) < im(¢) by [P70, Lemma 4.3.6 a)]. Thus, by Proposition |4.4| we
know

I vl VE

pogto fr = Y (e, )i o f} = 1o f € Home (T, 7). (35)

kelr

13



Since by Corollary the following two sets

Homy (T, 7)™ = span(|_J G2.F}) (36)

n<A

are equal, we therefore have shown

¢o c;\j = Z r,;\(qﬁ,i)céj mod E=*. (37)

kelr

Equation [23] is proved analogously. O

5.2 Cellular bases

We recall the definition of a cellular basis as presented in Muskan’s talk.

Definition 5.3 (Graham-Lehrer)

Let E be a finite-dimensional K-algebra. A cellular basis of E consists of a standard basis
B together with an involutive antialgebra morphism *: £ — FE such that the following two
equalities hold:

(i) 1M = J* for every A € A,
(ii) ¢f; = cj; for every (i,7) € 1" x JN.

We will now turn some of the bases constructed in the basis theorem [.1] into cellular bases.
To do so, we need the following definitions.

Definition 5.4
A strong duality on € consists of:

(i) A contravariant K-linear endofunctor D: ¢ — € on €,
(ii)) A natural isomorphism of K-linear functors
f: ldcg - D2

that satisfies
idpx) = D(x) © Epx)

for all objects X € €. As a commutative diagram:

D(X) » D(X)

D(¢x)
D*(X)
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Definition 5.5
Let D: € — € be a strong duality on €. A self-dual object (X, ¢) in € consists of an object
X € € and an isomorphism ¢: D(X) = X.

Construction 5.6.
Let (D,€&) be a strong duality on €. Let (X, ¢) be a self-dual object in €. Define the K-
antialgebra morphism

a;l € Endg(X)

by letting a;l(go) = ¢ o D(p)o¢! for all ¢ € Endg(X). Define
a:=¢oD(¢p ') olx e Endg(X).

Using the naturality of £, one sees that

0p2(¢) =aopoa

for all ¢ € Endg(X). In particular, a;l has a two-sided inverse

a, € End(X).

Definition 5.7
Let (D, &) be a strong duality on €. A self-dual object (X, ¢) is called a fixed point of D if o
from Construction [5.6] is an anti-involution, i.e. if

adzefgbo D(¢pHoéx =idy.

Definition 5.8
An object X € € is called fixed by D if there exists an isomorphism ¢: D(X) — X such that
the pair (X, ¢) is a fixed point of D.

A proof of the following lemma is given in [BT22, Lemma 3.13.].

Lemma 5.9.
Let D be a strong duality on € that exchanges standard and costandard objects, i.e.

for all A € A. Then we have:
(i) Every simple object L(A) is fixed by D,

(ii) Every tilting object T' € ¢ admits a self-dual structure, i.e. there exists an isomorphism
¢: D(T) = T.

15



Definition 5.10
A standard duality on € is a strong duality D on € such that:

(i) The duality D exchanges standard and costandard objects, i.e. for all A € A we have

(ii) Every indecomposable tilting object T'(\) is a fixed point, i.e. for every A € A and every
isomorphism ¢: D(T(\)) — T(\), the pair (T()\), ¢) is a fixed point of D.

Remark 5.11.
Lemma [5.9] ensures that condition (ii) in Definition is not void (, i.e. that there exists an
isomorphism ¢: D(T'(\)) = T(N)).

Construction 5.12.
Let D be a standard duality on €. Let T € € be a tilting object. We will sketch how some of
the bases of End(7) constructed in the basis theorem carry a cellular structure.

For this purpose, choose for every A € A a basis G3 of Homg(A(N), T). For any A € A, then
pick a set of extensions (N}’% of G7. along the monomorphism ¢* as in Construction .

Since the full subcategory 4" consisting of tilting objects in 4 is a Krull-Schmidt category
(as shown in Corollary 3.2.6.3. of Kian’s talk), the tilting object T is a finite direct sum of
indecomposable tilting objects T'(\). By property (ii) of a standard duality and since the functor
D is required to be K-linear, we therefore know that the tilting object T is fixed by D. In
other words, we can choose an isomorphism

such that

¢r o D(¢7p') 0 & = idr .
Using this isomorphism, one constructs for every A € A a basis D(G?) of Homg (T, V())) and
a corresponding set of lifts D(G%.). For details see [BT22, p. 24]. We then let

D(Gr) = [ D(G}).

AEA

Theorem 5.13.

Let D be a standard duality on €. Let T'€ € be a tilting object. Choose a basis G and a set
of extensions G. Then the standard basis GrD(Gr) of Endg(T) together with the involutive
antialgebra morphism a,, (as defined in Construction define a cellular basis.

Proof.
Note that the duality D is fully faithful and exchanges standard and costandard objects. To-
gether with the fact that the tilting object T" admits a self-duality, this implies for all A € A:

Homg (A(N), T) = Home (D(T), D(A(N))) = Homg (T, V())). (38)

With Lemma 3.2.4. from Kian’s talk, we conclude I* = J*.
A detailed proof of the fact that the equality g, (c;j) = c¢;; holds for all (i,5) € I* x J* is
given in [BT22, Theorem 3.16]. O
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