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1 Introduction

In this talk, we construct certain combinatorial bases of the endomorphism algebra of a tilting
object in a standard category over a field. The talk closely follows [BT22, Section 3]. Conse-
quently, for the most part we employ the notational conventions of [BT22]. The quoted article
[BT22] generalises the construction of [AST18] from the context of quantum enveloping algebras
to a broader categorical framework. More precisely, the category of modules over a quantum
enveloping algebra is replaced by an arbitrary so-called standard category over a field.

For completeness, we recall the definition of a standard category over a field.

Definition 1.1
Let K be a field. Let Λ be a partially ordered set. A category C is called a standard category
over K with respect to Λ if it satisfies the following four assumptions:

1. (Basic properties) The category C is an essentially small, locally finite, K-linear, abelian
category. By locally finite we mean on the one hand that all objects in C have finite length.
On the other hand, the hom-space HomC pX, Y q is required to be a finite-dimensional K-
vector space for all objects X, Y P C .

2. (Simple objects) There exists a set tLpλquλPΛ of simple objects in C such that the function

Λ ÝÑ tisomorphism classes of simple objects in C u

λ ÞÝÑ isomorphism class of Lpλq

is a bijection.

3. (Ext-vanishing condition) Each Lpλq has a costandard object ∇pλq and a standard object
∆pλq such that the following Ext-vanishing condition holds for every i P t0, 1, 2u and all
λ, µ P Λ:

ExtiC p∆pλq,∇pµqq –

#

K if i “ 0 and λ “ µ

0 else

4. (Indecomposable tilting objects)

(a) For any λ P Λ, there is an indecomposable tilting object T pλq such that:

i. T pλq is of highest weight λ,

ii. There is a monomorphism ∆pλq ãÑ T pλq,

iii. There is an epimorphism T pλq ↠ ∇pλq.

(b) The function

Λ ÝÑ tisomorphism classes of indecomposable tilting objects in C u

λ ÞÝÑ isomorphism class of T pλq

is a bijection.

Remark 1.2. (Terminology)
We will mostly call a ‘standard category over K with respect to Λ’ simply a ‘standard category
over K’.
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Recall Proposition 3.2.5 from the previous talk by Kian.

Proposition 1.3. (Donkin’s Ext-criteria)
Let C be a standard category over K. Then the following two equivalences hold:

(i) M P C ∆ if and only if Ext1C pM,∇pλq “ 0 for all λ P Λ.

(ii) N P C ∇ if and only if Ext1C p∆pλq, Nq “ 0 for all λ P Λ.

Corollary 1.4.
Let C be a standard category over K. Let M P C ∆ and N P C ∇. Then Ext1C pM,Nq “ 0.

Proof.
We proceed by induction on the length of a costandard filtration of N . The base case follows
immediately from Proposition 1.3. For the induction step, let

0 “ N0 Ĺ ¨ ¨ ¨ Ĺ Nn´1 Ĺ Nn “ N (1)

be a costandard filtration of N P C . Let λ P Λ such that Nn{Nn´1 – ∇pλq. Applying the
functor HomC pM,´q to the short exact sequence

0 Ñ Nn´1 Ñ N Ñ ∇pλq Ñ 0 (2)

yields an exact sequence

0 Ñ ¨ ¨ ¨ Ñ Ext1C pM,Nn´1q Ñ Ext1C pM,Nq Ñ Ext1C pM,∇pλqq Ñ ¨ ¨ ¨ . (3)

By the induction hypothesis we know that Ext1C pM,Nn´1q “ 0 holds. Moreover, by Proposition
1.3 we have Ext1C pM,∇pλqq “ 0. Since the sequence 3 is exact, it follows that Ext1C pM,Nq “ 0.
By induction the claim follows. l

2 Tools: Lifts and extensions

For the remainder of this talk, we fix a field K and a standard category C over K. Additionally,
we fix objects M P C ∆ and N P C ∇.
For every λ P Λ, we choose an epimorphism πλ : T pλq ↠ ∇pλq and a monomorphism

ιλ : ∆pλq ãÑ T pλq. These exist by Definition 1.1.4. For every λ P Λ, define cλ :“ πλ ˝ ιλ.
Informally, we will construct bases of HomC pM,Nq by ‘factorizing through the indecompos-

able tilting objects tT pλquλPΛ of C .’ Each factoring morphism will be realized either as a lift
along πλ or as an extension along ιλ.

The following lemma will be the main tool in the subsequent construction of bases of HomC pM,Nq.

Lemma 2.1. (Lifting lemma)
Let λ P Λ.
(i) Any morphism f : M Ñ ∇pλq lifts to a morphism rf : M Ñ T pλq along πλ : T pλq ↠ ∇pλq.

As a commutative diagram:

M T pλq

∇pλq

D rf

πλf
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(ii) Dually, any morphism g : ∆pλq Ñ N extends to a morphism rg : T pλq Ñ N along
ιλ : ∆pλq ãÑ T pλq. As a commutative diagram:

∆pλq

T pλq N

g
ιλ

Drg

Proof.
We only prove the first part of the lemma; the second one is shown dually.
Consider the short exact sequence

0 Ñ kerpπλq Ñ T pλq
πλ
ÝÑ ∇pλq Ñ 0. (4)

We claim that the object kerpπλq P C admits a costandard filtration. By Donkin’s Ext-criteria
1.3 this amounts to proving that Ext1C p∆pµq, kerpπλqq “ 0 for all µ P Λ. The subsequent proof
of this claim was suggested by Paul Wedrich. Let µ P Λ. Applying the functor HomC p∆pµq,´q

to the short exact sequence 4 yields an exact sequence

HomC p∆pµq, T pλqq
πλ˚
ÝÑ HomC p∆pµq,∇pλqq Ñ Ext1C p∆pµq, kerpπλqq Ñ Ext1C p∆pµq, T pλqq. (5)

Note that by Donkin’s Ext-criteria 1.3, we have Ext1C p∆pµq, T pλqq “ 0. We make a case dis-
tinction. If µ ‰ λ, then by Definition 1.1.3, we have HomC p∆pµq,∇pλqq “ 0. Since sequence 5
is exact, we conclude Ext1C p∆pµq, kerpπλqq “ 0. If on the other hand µ “ λ, then by Proposition
3.2.7.3 from Kian’s talk, the morphism

πλ˚ : HomC p∆pλq, T pλqq Ñ HomC p∆pλq,∇pλqq (6)

is surjective. By the exactness of sequence 5 and since Ext1C p∆pλq, T pλqq “ 0 holds, this implies
Ext1C p∆pλq, kerpπλqq “ 0. Thus, the object kerpπλq P C admits a costandard filtration.
Since by assumption, M P C admits a standard filtration, it follows from Corollary 1.4

that Ext1C pM, kerpπλqq “ 0. Consequently, by applying the left exact functor HomC pM,´q to
sequence 4 we obtain the exact sequence

0 Ñ HomC pM, kerpπλqq Ñ HomC pM,T pλqq
πλ˚
ÝÑ HomC pM,∇pλqq Ñ Ext1C pM, kerpπλqq “ 0.

Thus, the map
πλ˚ : HomC p∆pM,T pλqq Ñ HomC pM,∇pλqq

is surjective. l

Remark 2.2.
In general, the lifts and extensions of the lifting lemma 2.1 are not unique. In other words,
post-composition with πλ (pre-composition with ιλ) is not injective in general. Moreover, the
proof of the lifting lemma 2.1 gives a criterion for the injectivity of the map πλ˚ . Namely, the
map πλ˚ is injective if and only if HomC pM, kerpπλqq “ 0.
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3 Basic construction

By employing the lifting lemma 2.1, we will now construct bases of the finite-dimensional
K-vector space HomC pM,Nq.

Construction 3.1.
The construction consists of six steps.

(1) For every λ P Λ, choose a basis F λ
M of the finite-dimensionalK-vector space HomC pM,∇pλqq.

(2) Next, for every λ P Λ and every basis element f P F λ
M choose a lift rf P HomC pM,T pλqq

along πλ. Such a lift exists by the lifting lemma 2.1. Denote the set of lifts by

rF λ
M :“ t rf | f P F λ

Mu.

(3) Dually, for every λ P Λ, choose a basis Gλ
M of the finite-dimensional K-vector space

HomC p∆pλq, Nq.

(4) For every λ P Λ and every basis element g P Gλ
N pick an extension rg P HomC pT pλq, Nq

along ιλ. Denote the set of extensions by

rGλ
N :“ trg | g P Gλ

Nu.

(5) Next, for every λ P Λ, define the subset

rGλ
N
rF λ
M :“

␣

rg ˝ rf | rg P rGλ
N and rf P rF λ

M

(

Ď HomC pM,Nq.

Here, we employ the following convention: If one of the sets rGλ
N or rF λ

M is empty, then we

let the set rGλ
N
rF λ
M be empty.

One may illustrate the set rGλ
N
rF λ
M by the subsequent commutative diagram:

∆pλq

M T pλq N

∇pλq

g
ιλ

rg

rf

f πλ

(6) Finally, define the following set

rGN
rFM :“

ď

λPΛ

rGλ
N
rF λ
M Ď HomC pM,Nq.
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4 Basis theorem(s)

The next theorem is the main result of this section.

Theorem 4.1. (Basis theorem)

The set rGN
rFM is a basis of the K-vector space HomC pM,Nq.

Before we prove the basis theorem, we first show a weaker version. To be able to formulate
and prove the weaker version we need a few additional definitions and results.

Definition 4.2
Let ϕ P HomC pM,Nq be a morphism. Let µ P Λ. We call ϕµ :“ rimpϕq : Lpµqs P N the
µ-multiplicity of ϕ.

Lemma 4.3. (Subadditivity of the µ-multiplicity)
Let ϕ, ψ P HomC pM,Nq and µ P Λ. Then we have pϕ ` ψqµ ď ϕµ ` ψµ.

The proof of Lemma 4.3 employs a corollary of the following proposition.

Proposition 4.4.
Let λ P Λ. Let

0 Ñ X Ñ Z Ñ Y Ñ 0

be a short exact sequence in C . Then the following equality holds

rZ : Lpλqs “ rX : Lpλqs ` rY : Lpλqs.

Proof.
The proposition immediately follows from the proof of [P70, Corollary 4.5.2].
More specifically, let

0 “ Z0 Ĺ ¨ ¨ ¨ Ĺ Zi “ X Ĺ ¨ ¨ ¨ Ĺ Zn “ Z

be a composition series of Z through X. Such as composition series exists by [P70, Proposition
4.5.1]. Note that for all k P ti, . . . , n ´ 1u we have

pZk`1{Xq{pZk{Xq – Zk`1{Zk (7)

by one of the isomorphism theorems. In particular, the object pZk`1{Xq{pZk{Xq is simple for
all k P ti, . . . , n ´ 1u. Thus, 0 “ Zi{X Ĺ ¨ ¨ ¨ Ĺ Zn{X – Y is a composition series of Y . Now,
equation 7 immediately yields rZ : Lpλqs “ rX : Lpλqs ` rY : Lpλqs.

l

Corollary 4.5.
Let λ P Λ. Let X, Y P C be objects. Then the following hold:

(i) If there exists a monomorphism X ãÑ Y , then we have rY : Lpλqs ě rX : Lpλqs.

(ii) If there exists an epimorphism Y ↠ X, then we have rY : Lpλqs ě rX : Lpλqs.

(iii) We have rX ‘ Y : Lpλqs “ rX : Lpλqs ` rY : Lpλqs.
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Proof of Lemma 4.3.
Let ϕ, ψ P HomC pM,Nq and µ P Λ. Firstly, note that impϕ ` ψq Ď impϕq Y impψq by [P70,
Lemma 4.3.6.]. Here, impϕq Y impψq denotes the join in the preorder of subobjects of N . The
join exists in any abelian category. Additionally, the two canonical morphisms

impϕq Ñ impϕq Y impψq

impψq Ñ impϕq Y impψq

induce an epimorphism
impϕq ‘ impψq ↠ impϕq Y impψq.

Thus, by Corollary 4.5 we have for all µ P Λ:

pϕ ` ψqµ
def
“ rimpϕ ` ψq : Lpµqs ď rimpϕq Y impψq : Lpµqs ď rimpϕq ‘ impψq : Lpµqs

“ rimpϕq : Lpµqs ` rimpψq : Lpµqs

def
“ ϕµ ` ψµ.

lNext, given λ P Λ, define two sets

HomC pM,Nq
ďλ :“ tϕ P HomC pM,Nq | ϕµ ‰ 0 implies µ ď λu,

HomC pM,Nq
ăλ :“ tϕ P HomC pM,Nq | ϕµ ‰ 0 implies µ ă λu.

Remark 4.6. (A filtration-like structure)
Let µ, λ P Λ. If µ ď λ holds, then we have the subsequent inclusions:

HomC pM,Nq
ďµ

Ď HomC pM,Nq
ďλ,

HomC pM,Nq
ăµ

Ď HomC pM,Nq
ăλ.

Proposition 4.7.
Let λ P Λ.

(i) The set HomC pM,Nqďλ is a K-vector subspace of HomC pM,Nq.

(ii) Similarly, the set HomC pM,Nqăλ is a K-vector subspace of HomC pM,Nq.

Proof.
We only show statement (i). Statement (ii) is proved analogously.
Clearly, we have 0MN P HomC pM,Nqďλ. Next, we convince ourselves that the set HomC pM,Nqďλ

is closed under scalar multiplication. To do so, let k P K and HomC pM,Nqďλ. Since the cate-
gory C is K-linear, we have

impk ¨ ϕq –

#

impϕq if k ‰ 0

0 else
(8)

Hence, k ¨ ϕ P HomC pM,Nqďλ.
Next, we argue that HomC pM,Nqďλ is closed under addition. Let ϕ, ψ P HomC pM,Nqďλ.

Let µ P Λ such that µ ę λ. By the subadditivity of the µ-multiplicity (i.e. Lemma 4.3), we
then have:

0 ď pϕ ` ψqµ ď ϕµ ` ψµ “ 0 ` 0 “ 0. (9)

l
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Lemma 4.8.
Let λ P Λ. If ϕ, ψ P HomC pM,Nq and ϕλ “ 0, then pϕ ` ψqλ “ ψλ.

Proof.
Consider the map q :“ cokerpϕq : N Ñ N{impϕq. Set ϕ “ q ˝ ϕ and ϕ ` ψ “ q ˝ pϕ ` ψq. Since
in an abelian category composition is bilinear, we have ϕ ` ψ “ ψ. Moreover, we claim that
pϕ ` ψqλ “ pϕ ` ψqλ and ψλ “ ψλ. We only show ψλ “ ψλ. The other equality is proven
analogously. By Corollary 4.5 we know that

0 ď rimpψq X impϕq : Lpλqs ď rimpϕq : Lpλqs
def
“ ϕλ “ 0. (10)

Consider the following short exact sequence

0 Ñ impϕq X impψq
inc
ÝÑ impψq

qæimpψq

ÝÝÝÝÑ impqæimpψqq “ impq ˝ ψq Ñ 0.

Here, the morphism qæimpψq : impψq Ñ N{ impϕq is defined as the composition of morphisms
qæimpψq :“ q˝m, wherem : impψq ãÑ N denotes the canonical monomorphism. With Proposition

4.4 and equation 10 we conclude ψλ “ ψλ.
In total, we find

pϕ ` ψqλ “ pϕ ` ψqλ “ ψλ “ ψλ.

l

We are now finally able to prove the weaker version of the basis theorem 4.1.

Proposition 4.9. (Dependent basis theorem)

For every µ P Λ, choose a basis F µ
M and a corresponding set of lifts rF µ

M . Then for all µ P Λ,

there exists a basis Gµ
N and a set of extensions rGµ

N satisfying the following properties:

(i) The set rGN
rFM is a basis of the K-vector space HomC pM,Nq.

(ii) Let µ P Λ. If ϕ is a non-zero morphism in the K-span spanK
`

rGµ
N
rF µ
M

˘

Ď HomC pM,Nq of
rGµ
N
rF µ
M , then ϕµ ‰ 0.

Additionally, any choice of Gµ
N and rGµ

N that satisfies properties (i) and (ii) also satisfies the
following two properties:

(iii) For all λ P Λ, the set
Ť

µďλ
rGµ
N
rF µ
M is a K-vector space basis of HomC pM,Nqďλ.

Similarly, for all λ P Λ, the set
Ť

µăλ
rGµ
N
rF µ
M is a K-vector space basis of HomC pM,Nqăλ.

(iv) The sets rGµ
N
rF µ
M are pairwise disjoint for the various µ P Λ.

Proof.
Regarding (i) and (ii): We will show statements (i) and (ii) simultaneously by induction on the
length l of a costandard filtration of N .
Base case: If l “ 1 holds, then there exists an element λ P Λ such that N – ∇pλq.
We set

Gµ
N :“

#

tcλu if λ “ µ

H else
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Here, the morphism cλ is defined as in Section 2. If µ “ λ holds, then Gµ
N “ tcλu is a

basis of HomC p∆pµq,∇pλqq – K since cλ is non-zero. If on the other hand µ ‰ λ holds,
then HomC p∆pµq,∇pλqq – Ext0C p∆pµq,∇pλqq “ 0 by Definition 1.1.3. Thus, Gµ

N is a basis of
HomC p∆pµq, Nq for all µ P Λ. Next, define

rGµ
N :“

#

tπλu if λ “ µ

H else

By definition of cλ (c.f. Section 2), the morphism πλ extends cλ along ιλ.
Now, observe that the following chain of equalities holds

rGN
rFM “ rGλ

N
rF λ
M “ F λ

M . (11)

Thus, the set rGN
rFM “ F λ

M defines a basis of theK-vector space HomC pM,Nq “ HomC pM,∇pλqq.

To show statement (ii) in the case l “ 1, pick µ P Λ and let ϕ P spanK
`

rGµ
N
rF µ
M

˘

be a non-zero

morphism. Since spanK
`

rGµ
N
rF µ
M

˘

“ 0 for µ ‰ λ by definition of rGµ
N and by the convention

mentioned in step (5) of Construction 3.1, we conclude µ “ λ. Thus, we have with equation 11

ϕ P spanK
`

F λ
M

˘

“ HomC pM,∇pλqq.

In particular, the image impϕq is a non-zero subobject of ∇pλq. Hence, the socle Lpλq –

Soc∇pλq is a subobject of impϕq. Thus, by [P70, Proposition 4.5.1] there exists a composition
series

0 “ A0 Ĺ A1 Ĺ ¨ ¨ ¨ Ĺ An “ impϕq

in which Lpλq appears as an element. Since Lpλq is simple, we know A1 “ Lpλq and thus

0 ‰ rimpϕq : Lpλqs
def
“ ϕλ. This shows statement (ii) in the case that l “ 1.

Induction step: For the induction step let l P Nzt1u. Let N P C be an object with costandard
filtration

0 “ N0 Ĺ ¨ ¨ ¨Nl´1 Ĺ Nl “ N. (12)

By the induction hypothesis, there exists a basis GNl´1
of HomC p∆pλq, Nl´1q and a set of

extensions rGNl´1
such that the set rGNl´1

rFM is a basis of HomC pM,Nl´1q satisfying (ii). From
said data we now construct a basis of HomC pM,Nq.

To do so, find λ P Λ with Nl{Nl´1 – ∇pλq. Consider the short exact sequence

0 Ñ Nl´1
inc
ÝÑ N

proj
ÝÝÑ ∇pλq Ñ 0. (13)

Let µ P Λ. Applying the left exact functor HomC p∆pµq,´q to sequence 13 and using Corollary
1.4 yields the following short exact sequence in the category of finite-dimensional K-vector
spaces:

0 Ñ HomC p∆pµq, Nl´1q
inc˚
ÝÝÑ HomC p∆pµq, Nq

proj˚
ÝÝÝÑ HomC p∆pµq,∇pλqq Ñ 0. (14)

Analogously, by applying the left exact functor HomC pM,´q to sequence 13 we obtain the
following short exact sequence in the category of finite-dimensional K-vector spaces:

0 Ñ HomC pM,Nl´1q
inc˚
ÝÝÑ HomC pM,Nq

proj˚
ÝÝÝÑ HomC pM,∇pλqq Ñ 0. (15)
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Next, we define the set Gµ
N depending on µ P Λ.

In the case that µ ‰ λ, set
Gµ
N :“ inc˚

`

Gµ
Nl´1

˘

(16)

rGµ
N :“ inc˚

`

rGµ
Nl´1

˘

. (17)

Since by Definition 1.1.3 we have HomC p∆pµq,∇pλqq “ 0 if µ ‰ λ, the morphism inc˚ in se-
quence 14 is a K-linear isomorphism. Thus, the set Gµ

N is a basis of HomC p∆pµq, Nq. Moreover,

by construction the set rGµ
N is a set of extensions of Gµ

N along ιµ.
In the case that µ “ λ, choose a morphism gλ : ∆pλq Ñ N such that proj˝ gλ “ cλ. Here, the

morphism cλ is defined as in Section 2. Such a gλ exists, since the sequence 14 is exact. Then
the set

Gµ
N :“ inc˚

`

Gλ
Nl´1

˘

Y tgλu

defines a basis of HomC p∆pλq, Nq, since tcλu is a basis of HomC p∆pλq,∇pλqq – K and any
short exact sequence of vector spaces (in particular sequence 14) splits. Next, choose by the
lifting lemma 2.1 any extension rgλ : T pλq Ñ N of gλ along ιλ and set

rGλ
N :“ inc˚

`

rGλ
Nl´1

˘

Y trgλu. (18)

By construction the set rGλ
N is a set of extensions of Gλ

N along ιλ. We omit the proof that with

definitions 17 and 18 the set rGN
rFM “

Ť

λPΛ
rGλ
N
rF λ
M is a basis of HomC pM,Nq. A proof is given

in [AST18, Proposition 3.3.4]. That this basis satisfies (ii) is shown in detail in [BT22, p. 18].

To prove statements (iii) and (iv) choose a basis GN and a set of extensions rGN satisfying (i)
and (ii).

Regarding (iii): Let λ P Λ. By assumption (ii), it suffices to prove that
Ť

µďλ
rGµ
N
rF µ
M spans

HomC pM,Nqďλ. We first convince ourselves that if µ ď λ holds, then we have the inclusion

rGµ
N
rF µ
M Ď HomC pM,Nq

ďλ. (19)

To see this, let rgµi ˝ rfµj P rGµ
N
rF µ
M . Set cµij :“ rgµi ˝ rfµj . If pcµijqν

def
“ rimpcµijq : Lpνqs ‰ 0 for ν P Λ,

then rimprgµi q : Lpνqs ‰ 0. This follows from Corollary 4.5 since by [P70, Lemma 4.3.6 a)] we

have imprgµi ˝ rfµj q Ď imprgµi q. Thus, again by Corollary 4.5:

rT pµq : Lpνqs ě rT pµq{ kerprgµi q : Lpνqs “ rimprgµi q : Lpνqs ą 0. (20)

Since T pµq is of highest weight µ by Definition 1.1.4, we conclude µ ě ν. With the transitivity
of the partial order, we hence have λ ě ν. This shows inclusion 19. From inclusion 19 we
conclude

spanK
`

ď

µďλ

rGµ
N
rF µ
M

˘

Ď HomC pM,Nq
ďλ. (21)

Now, to show that the two sets appearing in 21 are actually equal, pick a non-zero morphism
ϕ P HomC pM,Nqďλ. By assumption (i), we can write

ϕ “
ÿ

µPΛ

aµijc
µ
ij

10



with aµij P K and cµij P rGµ
N
rF µ
M for µ P Λ. Pick a maximal (not necessarily unique) µ P Λ such

that aµij ‰ 0 for some i and j. Define

ϕµ :“
ÿ

i,j

aµijc
µ
ij and ϕ‰µ :“

ÿ

ν‰µ
i,j

aνijc
ν
ij.

Since the set of cµij’s isK-linearly independent, we know that ϕµ P spanK
`

rGµ
N
rF µ
M

˘

is non-zero.
With (ii) we conclude that the µ-multiplicity pϕµqµ is non-zero. By the maximality of µ we have
pϕ‰µqµ “ 0. Now, Lemma 4.8 yields the chain of equalities ϕµ “ pϕµ ` ϕ‰µqµ “ pϕµqµ ‰ 0. By
definition of HomC pM,Nqďλ, we conclude µ ď λ. Since this inequality holds for any maximal

µ, this implies ϕ P spanK
`
Ť

µďλ
rGµ
N
rF µ
M

˘

.

Regarding (iv): Let ϕ P rGλ
N
rF λ
M X rGµ

N
rF µ
M . By definition of a basis we have ϕ ‰ 0. With prop-

erty (ii) we conclude ϕµ ‰ 0. Additionally, by property (iii) we know that ϕ P HomC pM,Nqďλ.
Thus, µ ď λ. By exchanging µ and λ one shows λ ď µ. With the antisymmetry of a partial
order, we conclude λ “ µ.

l

Remark 4.10.
One may exchange the roles of FM and GN in the basis theorem 4.9.

With Lemma 3.2.4. from Kian’s talk, we obtain the following result.

Corollary 4.11. (Counting dimension via multiplicities in (co)standard filtrations)
We have

dimK

`

HomC pM,Nq
˘

“
ÿ

λPΛ

pM : ∇pλqq ¨ pN : ∆pλqq.

The dependent basis theorem now allows us to prove the original basis theorem by a change-
of-basis argument.

Proof of Theorem 4.1.
A detailed proof is given in [BT22, Proof of Theorem 3.2.]. The proof amounts to showing that
a certain linear transformation is an isomorphism. l

The proof of the basis theorem 4.1 yields the subsequent proposition.

Proposition 4.12.
Any choice for F λ

M , G
λ
N ,

rF λ
M ,

rGλ
N in Construction 3.1 satisfies property (ii) of the dependent

basis theorem 4.9.

Proposition 4.12 together with the dependent basis theorem 4.9 implies the following result.

Corollary 4.13.
Any choice for F λ

M , G
λ
N ,

rF λ
M ,

rGλ
N in Construction 3.1 satisfies properties (iii) and (iv) of the

dependent basis theorem 4.9.
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5 Combinatorial bases

We fix a tilting object T P C . The basis theorem 4.1 immediately gives us a way to construct
bases of the endomorphism algebra EndC pT q of T . In this section, we equip these bases with
extra (combinatorial) structure.

5.1 Standard bases

It turns out that the bases of the endomorphism algebra EndC pT q constructed in the basis
theorem 4.1 already come with a canonical combinatorial structure, making them so-called
standard bases.

Definition 5.1 (Du-Rui)
Let E be a finite-dimensional K-algebra. A standard basis of E consists of:

(i) A K-basis B of E,

(ii) A poset Λ and a function f : B Ñ Λ. We write Bλ :“ f´1pλq,

(iii) For any λ P Λ, indexing sets Iλ and Jλ such that:

(a) We can write Bλ “ tcλij | i P Iλ and j P Jλu,

(b) For any ϕ P E and any cλij P Bλ, we have:

ϕ ¨ cλij ”
ÿ

kPIλ

rλkpϕ, iqcλkj modEăλ, (22)

cλij ¨ ϕ ”
ÿ

lPJλ

rλl pj, ϕqcλil modEăλ, (23)

where rλkpϕ, iq, rλl pj, ϕq P K are independent of j and i, respectively.
Here, we let Eăλ :“ spanKp

Ť

µăλ B
µq Ď E.

Theorem 5.2.
Any K-basis rGT

rFT of EndC pT q arising from Construction 3.1 carries a canonical structure of
a standard basis.

Proof.
Firstly, note that by Corollary 4.13 the set B is fibered over the poset Λ, i.e.

rGT
rFT “

ž

λPΛ

rGλ
T
rF λ
T . (24)

For any λ P Λ, we can thus set
Bλ :“ rGλ

T
rF λ
T . (25)

Secondly, for any λ P Λ, define

Iλ :“ tn P N | n ď pT : ∆pλqqu (26)

Jλ :“ tn P N | n ď pT : ∇pλqqu. (27)

12



By Lemma 3.2.4. from Kian’s talk, we can index

rGλ
T “ trgλi | i P Iλu (28)

rF λ
T “ t rfλj | j P Jλu. (29)

We can thus write
Bλ “ trgλi ˝ rfλj | i P Iλ and j P Jλu. (30)

Next, we prove equation 22. Let ϕ P EndC pT q. Choose rgλi ˝ rfλj P rGλ
T
rF λ
T . Set cλij :“ rgλi ˝ rfλj .

Since Gλ
T is a basis of Homp∆pλq, T q, we find rλkpϕ, iq P K such that

ϕ ˝ gλi “
ÿ

kPIλ

rλkpϕ, iqgλk . (31)

Since for each k P Iλ the morphism rgλk extends gλk along ιλ, equation 31 yields

ϕ ˝ rgλi ˝ ιλ “
ÿ

kPIλ

rλkpϕ, iqprgλk ˝ ιλq. (32)

Since composition in an abelian category is bilinear, this amounts to

`

ϕ ˝ rgλi ´
ÿ

kPIλ

rλkpϕ, iqrgλk
˘

˝ ιλ “ 0. (33)

Note that HomC pT pλq, T q “ HomC pT pλq, T qďλ. The inclusion Ě is clear. For the other inclu-
sion, let ψ : T pλq Ñ T with ψµ ‰ 0. Then

rT pλq : Lpµqs ě rT pλq{ kerpψq : Lpµqs “ rimpψq : Lpµqs ą 0.

Since by assumption T pλq is of highest weight λ, we conclude µ ď λ. The inclusion Ď follows.

In particular, we see that ψ :“ ϕ ˝ rgλi ´
ř

kPIλ r
λ
kpϕ, iqrgλk P HomC pT pλq, T qďλ. We even know

that ψ P HomC pT pλq, T qăλ. To see this, note that by the universal property of the kernel and
by 33 there exists a monomorphism ∆pλq ãÑ kerpλq. Thus, by Corollary 4.5 we have

rkerpψq : Lpλqs ě r∆pλq : Lpλqs. (34)

Since both T pλq and ∆pλq are of highest weight λ, we conclude with one of the isomorphism
theorems:

0 “ rT pλq : Lpλqs ´ r∆pλq : Lpλqs
34
ě rT pλq : Lpλqs ´ rkerpψq : Lpλqs

4.4
ě rT pλq{ kerpψq : Lpλqs

“ rimpψq : Lpλqs.

Next, note that impψ ˝ rfλj q Ď impψq by [P70, Lemma 4.3.6 a)]. Thus, by Proposition 4.4 we
know

ϕ ˝ rgλi ˝ rfλj ´
ÿ

kPIλ

rλkpϕ, iqrgλk ˝ rfλj “ ψ ˝ rfλj P HomC pT, T q
ăλ. (35)
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Since by Corollary 4.13 the following two sets

HomC pT, T q
ăλ

“ spanKp
ď

µăλ

rGλ
T
rF λ
T q (36)

are equal, we therefore have shown

ϕ ˝ cλij ”
ÿ

kPIλ

rλkpϕ, iqcλkj modEăλ. (37)

Equation 23 is proved analogously. l

5.2 Cellular bases

We recall the definition of a cellular basis as presented in Muskan’s talk.

Definition 5.3 (Graham-Lehrer)
Let E be a finite-dimensional K-algebra. A cellular basis of E consists of a standard basis
B together with an involutive antialgebra morphism ˚ : E Ñ E such that the following two
equalities hold:

(i) Iλ “ Jλ for every λ P Λ,

(ii) c˚
ij “ cji for every pi, jq P Iλ ˆ Jλ.

We will now turn some of the bases constructed in the basis theorem 4.1 into cellular bases.
To do so, we need the following definitions.

Definition 5.4
A strong duality on C consists of:

(i) A contravariant K-linear endofunctor D : C Ñ C on C ,

(ii) A natural isomorphism of K-linear functors

ξ : idC Ñ D2

that satisfies
idDpXq “ DpξXq ˝ ξDpXq

for all objects X P C . As a commutative diagram:

DpXq DpXq

ξDpXq

D3pXq

idDpXq

DpξXq
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Definition 5.5
Let D : C Ñ C be a strong duality on C . A self-dual object pX,ϕq in C consists of an object
X P C and an isomorphism ϕ : DpXq

„
ÝÑ X.

Construction 5.6.
Let pD, ξq be a strong duality on C . Let pX,ϕq be a self-dual object in C . Define the K-
antialgebra morphism

α´1
ϕ P EndC pXq

by letting α´1
ϕ pφq :“ ϕ ˝ Dpφq ˝ ϕ´1 for all φ P EndC pXq. Define

a :“ ϕ ˝ Dpϕ´1
q ˝ ξX P EndC pXq.

Using the naturality of ξ, one sees that

α´2
ϕ pφq “ a ˝ φ ˝ a´1

for all φ P EndC pXq. In particular, α´1
ϕ has a two-sided inverse

αϕ P EndpXq.

Definition 5.7
Let pD, ξq be a strong duality on C . A self-dual object pX,ϕq is called a fixed point of D if αϕ
from Construction 5.6 is an anti-involution, i.e. if

a
def
“ ϕ ˝ Dpϕ´1

q ˝ ξX “ idX .

Definition 5.8
An object X P C is called fixed by D if there exists an isomorphism ϕ : DpXq

„
ÝÑ X such that

the pair pX,ϕq is a fixed point of D.

A proof of the following lemma is given in [BT22, Lemma 3.13.].

Lemma 5.9.
Let D be a strong duality on C that exchanges standard and costandard objects, i.e.

Dp∇pλqq – ∆pλq

for all λ P Λ. Then we have:

(i) Every simple object Lpλq is fixed by D,

(ii) Every tilting object T P C admits a self-dual structure, i.e. there exists an isomorphism
ϕ : DpT q

„
ÝÑ T.
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Definition 5.10
A standard duality on C is a strong duality D on C such that:

(i) The duality D exchanges standard and costandard objects, i.e. for all λ P Λ we have

Dp∇pλqq – ∆pλq,

(ii) Every indecomposable tilting object T pλq is a fixed point, i.e. for every λ P Λ and every
isomorphism ϕ : DpT pλqq

„
ÝÑ T pλq, the pair pT pλq, ϕq is a fixed point of D.

Remark 5.11.
Lemma 5.9 ensures that condition (ii) in Definition 5.10 is not void (, i.e. that there exists an
isomorphism ϕ : DpT pλqq

„
ÝÑ T pλq).

Construction 5.12.
Let D be a standard duality on C . Let T P C be a tilting object. We will sketch how some of
the bases of EndpT q constructed in the basis theorem carry a cellular structure.
For this purpose, choose for every λ P Λ a basis Gλ

T of HomC p∆pλq, T q. For any λ P Λ, then

pick a set of extensions rGλ
T of Gλ

T along the monomorphism ιλ as in Construction 3.1.
Since the full subcategory C t consisting of tilting objects in C is a Krull-Schmidt category

(as shown in Corollary 3.2.6.3. of Kian’s talk), the tilting object T is a finite direct sum of
indecomposable tilting objects T pλq. By property (ii) of a standard duality and since the functor
D is required to be K-linear, we therefore know that the tilting object T is fixed by D. In
other words, we can choose an isomorphism

ϕT : DpT q
„
ÝÑ T

such that
ϕT ˝ Dpϕ´1

T q ˝ ξT “ idT .

Using this isomorphism, one constructs for every λ P Λ a basis DpGλ
T q of HomC pT,∇pλqq and

a corresponding set of lifts Dp rGλ
T q. For details see [BT22, p. 24]. We then let

Dp rGT q :“
ž

λPΛ

Dp rGλ
T q.

Theorem 5.13.
Let D be a standard duality on C . Let T P C be a tilting object. Choose a basis GT and a set
of extensions rGT . Then the standard basis rGTDp rGT q of EndC pT q together with the involutive
antialgebra morphism αϕT (as defined in Construction 5.6) define a cellular basis.

Proof.
Note that the duality D is fully faithful and exchanges standard and costandard objects. To-
gether with the fact that the tilting object T admits a self-duality, this implies for all λ P Λ:

HomC p∆pλq, T q – HomC pDpT q, Dp∆pλqqq – HomC pT,∇pλqq. (38)

With Lemma 3.2.4. from Kian’s talk, we conclude Iλ “ Jλ.
A detailed proof of the fact that the equality αϕT pcijq “ cji holds for all pi, jq P Iλ ˆ Jλ is

given in [BT22, Theorem 3.16]. l
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